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Abstract

In this work, we apply the principles of WILL Relational Geometry (RG) to the
domain of cosmology and galactic dynamics. By strictly enforcing geometric closure
conditions with zero free parameters, we establish a sequential unbroken chain
of derivations from first principles to observational evidence.

1. Hubble parameter: we derive (H0 ≈ 68.15 km/s/Mpc) solely from the CMB
temperature and the fine-structure constant (α) providing the direct bridge
between scales and landing within 1% of Planck 2018 mission measurement
(H0 ≈ 67.4 km/s/Mpc).

2. Distant Supernova Flux Levels: using this H0 value along with kinetic and
potential geometric weights we compare the curve with Pantheon+ dataset -
deviations remains below 0.015 mag across the entire redshift range.

3. CMB Acoustic Spectrum: utilizing same derived horizon scale, we recon-
struct the CMB acoustic spectrum as the resonant harmonics of an S2 topology
loaded by ≈ 4.2% baryons, naturally resolving the "Low Quadrupole" anomaly
via vacuum tension.

4. Galactic Rotation Curves: we translate the global horizon into a local
acceleration scale (aκ = cH0/3π), which we apply to the SPARC database
(175 galaxies). This rigid geometric prescription predicts rotation curves, the
Radial Acceleration Relation (RAR), and the linear scaling of Phantom Inertia
with equal or higher precision than MOND phenomenology, without any fitting.

5. Dark Lensing: we extend this framework to the gravitational lensing of
"dark" potentials showing that the same Phantom Inertia responsible for galac-
tic dynamics, also stands behind the "dark lensing" phenomena.

6. Wide Binary Stars: applied to this dynamic systems the theory correctly
predicts the kinetic resonance scale (aβ = cH0/6π) matching recent Gaia DR3
within observational uncertainties.

These results show that the framework reproduces the considered empirical con-
straints across approximately 20 orders of magnitude. Taken together, these results
motivate considering a relational-geometric ontology as a viable alternative to
dark-sector phenomenology, and they warrant further empirical stress-testing across
independent datasets.
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1 Methodological Framework (WILL RG Part I Recap)

1.1 Ontological Principle: Generative Physics (Results Estab-
lished in WILL RG Part I)

Standard cosmological models operate on a descriptive paradigm, fitting dynamical laws
(Lagrangians) onto a pre-existing spacetime manifold. We adopt a strictly generative
approach based on the foundational principle established in WILL Relational Geometry
(Part I):

SPACETIME ≡ ENERGY
Throughout this paper, the identity is to be read as an ontological identification,

not as an algebraic equation or a dynamical law.
This principle asserts that "spacetime" and "energy" are not distinct entities but dual
projections of a single invariant relational structure. Consequently, we do not postulate a
background metric. Instead, geometry emerges solely from the conservation requirements
of closed relational carriers.

1.2 The Relational Carriers: S1 and S2

The topology of a closed, maximally symmetric system admits exactly two minimal rela-
tional carriers for the energy budget:

1. Kinematic Carrier (S1): Encodes directional transformation (1 Degree of Free-
dom). Its state is defined by the orthogonal projections:

β2 + β2
Y = 1

where β = v/c is the kinematic amplitude (external motion) and βY = 1/γ is the
phase (internal time rate).

2. Potential Carrier (S2): Encodes omnidirectional interaction (2 Degrees of Free-
dom). Its state is defined by:

κ2 + κ2
X = 1

where κ2 = Rs/r represents the gravitational potential intensity and κX is the
structural phase (gravitational redshift).

(z = gravitational redshift) (zD = transverse Doppler shift)

β = cos θ1

βY = sin θ1

E

β

βY

θ1

E = E0/βY
p = E0 β/βY = E0 cot(θ1)

κX = cos θ2

κ = sin θ2

Eg

κX

κ

θ2

Eg = E0/κX
pg = E0 κ/κX = E0 tan(θ2)

compose
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θ1 = arccos(β), θ2 = arcsin(κ), κ2 = 2β2

Algebraic Form Trigonometric Form
β = v/c =

√
1− 1

(1+zD)2
β = cos(θ1)

κ =
√

Rs/r =
√

1− 1
(1+z)2

κ = sin(θ2)

βY =
√

1− β2 βY = sin(θ1) = sin(arccos(β))

κX =
√
1− κ2 κX = cos(θ2) = cos(arcsin(κ))

p = E0/c · β/βY p = E0/c · cot(θ1)
pg = E0/c · κ/κX pg = E0/c · tan(θ2)

τ = βY κX τ = sin(θ1) cos(θ2)

Q =
√

κ2 + β2 =
√
3β Q =

√
3 cos(θ1)

Table 1: Unified representation of relativistic and gravitational effects for closed systems.

1.3 The Energetic Closure Condition

For any stable, self-contained system, the energy budget must be partitioned between
these carriers. The exchange rate is strictly determined by the ratio of their relational de-
grees of freedom (DOFS2/DOFS1 = 2). This yields the fundamental Closure Condition
governing all bound systems (virial equilibrium):

κ2 = 2β2 (1)

This geometric identity replaces the Newtonian dynamical postulate. It implies that
for any closed system, the gravitational potential energy (κ2) must be exactly twice the
kinetic energy (β2) to maintain topological stability.

1.4 Total Relational Shift and Self-Centering Reciprocity

Interaction between observers is defined by the Total Relational Shift (Q), which mea-
sures the magnitude of displacement from the observer’s origin on a (β, κ) plane (1):

Q2 = β2 + κ2 (2)

Under the closure condition (1), this norm simplifies to Q2 = 3β2 = 3
2
κ2. The potential

weight of the total relational shift is: Ωpot =
κ2

Q2 = 2
3
. The kinematic weight of the total

relational shift is: Ωkin = β2

Q2 = 1
3
.

2 The Necessity of Global Resonance
Having established that the relational carriers of WILL are topologically closed (WILL
Part I: Lemma Closure), we now derive the consequences of closure for persistent dy-
namics. Consequently, since SPACETIME ≡ ENERGY, any spatial separation is defined
intrinsically by relational energy differentials.

Lemma 2.1 (Inevitability of Self-Interaction). In a closed relational carrier C with finite
measure, any relational perturbation cannot propagate indefinitely without re-encountering
its own wavefront.
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β (Kinematic)

κ (Gravitational)

Obs (0, 0)

Obj (0, 0)

Q

β

κ

Observer’s Horizon

Interaction Condition:
Q < 1 (Centers are mutually enclosed)

Figure 1: Relational Self-Centering. The relational shift Q is defined by the orthogonal
projections β and κ. Interaction is causal only when the center of the Object lies within
the Observer’s horizon (Q < 1), ensuring mutual coverage.

Proof. Since C is compact and boundary-free (WILL RG Part I: Lemma Closure), any
causal propagation along C is recurrent. Therefore the local relational state generically
includes contributions from its own propagated history (echoes).

Theorem 2.2 (Global Phase-Closure Constraint). Persistent modes on a closed relational
carrier must satisfy global phase closure. Modes incompatible with closure do not persist
under repeated self-interaction.

Proof. By Lemma 2.1, propagation is recurrent. If the phase accumulated along a closure
path fails to match the phase of the originating state, repeated re-encounters are gener-
ically dephasing. Only modes that are compatible with closure (∆ϕglobal = 2πn) avoid
systematic dephasing and can persist as stable global structure.

This implies that a single mode oscillation corresponds to the Fundamental Tone of the
observable Universe. Our methodology strictly precludes the acceptance of empirically
fitted values (like H0); instead, we must derive it from first principles. To find this exact
Tone, we rely on the core principle of WILL RG:

SPACETIME ≡ ENERGY

3 Deriving H0 from CMB Temperature and α

The most robust, model-independent absolute scale available in cosmology is the monopole
temperature of the Cosmic Microwave Background (T0). It defines the current radiation
energy density ργ.
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As derived in WILL RG Part III, the fine-structure constant α acts as the kinematic
projection of the ground state (β1 ≡ α), connecting micro- and macro-closure. This fixes
the RG scaling ratio between the radiation density ργ and the geometric saturation density
ρmax (derived in WILL Part I as density at r = Rs =⇒ κ2 = 1).

3.1 Prerequisite: The Geometric Identity of α (Summary of Part
III)

In WILL RG Part III, atomic stability is derived not from force equilibrium, but from the
Geometric Closure Condition between the potential (S2) and kinetic (S1) carriers:
κ2 = 2β2.

We defined the Electromagnetic Critical Radius (Rq) as the scale of energetic
saturation (U = Erest/2), and the Bohr Radius (a0) as the scale of topological phase
closure (n = 1). The Fine Structure Constant α is rigorously identified as the unique
Kinematic Projection (β1) required to bridge these two scales:

α ≡ β1 =

√
1

2

Rq

a0
(3)

Thus, α is the scaling factor defining the ratio between the critical limit of the field
and the stable state of matter. This rigid geometric scaling (β ↔ κ) allows us to use
α to map the macroscopic saturation density ρmax in the following section.

3.2 Input Parameters and Constants

All input values are taken from standard CODATA (2018) and Planck (2018) datasets.
No model-specific fitting parameters are used.

Parameter Symbol Value Source/Definition

CMB Temperature T0 2.7255 Fixsen (2009) / Planck

Fine Structure Const. α 7.29735e-3 CODATA (≈ 1/137.036)

Gravitational Const. G 6.674e-11 CODATA

Speed of Light c 2.99792e8 Exact

Stefan-Boltzmann Const. σSB 5.67037e-84 Derived from fundamental

Table 2: Core inputs for the calculation.

3.3 Step-by-Step Derivation

3.4 Step 1: Radiation Density Calculation (ργ)

Objective: Determine the absolute mass-energy density of the photon gas filling the Uni-
verse. This provides the "Energy" input for the Spacetime ≡ Energy equivalence.

ργ =
4σSBT

4
0

c3
(4)

Using the input T0 = 2.7255 K:

ργ ≈ 4.641× 10−31 kg/m3 (5)
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3.5 Step 2: Maximal Geometric Density (ρmax)

Objective: Calculate the saturation density of the geometric field.
Logic: In WILL Relational Geometry, the closure condition of the observable Universe

is enforced by the SPACETIME ≡ ENERGY principle. The total relational shift for
an energy-closed system is governed by the form Q2 = 3β2. Since the geometric identity
α ≡ β1 (derived in Part III) defines the kinematic projection of the electromagnetic
domain, the Relational Limit of the EM-field itself is given by:

Q2
EM = 3β2

EM = 3α2 (6)

The normalization of the photon density ργ relative to the saturation density ρmax is
determined strictly by this condition:

ργ = Q2
EMρmax (7)

Rearranging for ρmax:

3ρmax =
ργ
α2

⇒ ρmax =
ργ
3α2

. (8)

Using α ≈ 7.297× 10−3 (where α2 ≈ 5.325× 10−5):

ρmax ≈ 4.641× 10−31

3 · 5.325× 10−5
≈ 2.907× 10−27 kg/m3 (9)

Note on Relativistic Backgrounds: Standard cosmology includes a neutrino energy density
contribution (ρν). However, in WILL RG, the geometric horizon is defined strictly by the
electromagnetic coupling limit (α). Since neutrinos are electrically neutral and do not
couple to the charge structure defining α, they do not contribute to the electromagnetic
saturation density ρmax.

3.6 Step 3: The Hubble Parameter (H0)

Objective: Convert the saturation density into the frequency parameter.
Logic: Using the WILL RG saturation identity ρmax(r) = c2/(8πGr2) together with

the horizon definition H0 = c/r, we obtain the relation:

H0 =
√

8πGρmax. (10)

3.7 Results and Numerical Calculation

Substituting the derived ρmax into the final equation:

H0 =
√

8π · (6.674× 10−11) · (2.907× 10−27)

H0 =
√
4.877× 10−36

H0 ≈ 2.2084503668× 10−18 s−1
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3.8 Unit Conversion

Converting from SI units (s−1) to standard cosmological units (km/s/Mpc):

Conversion Factor =
3.0857× 1022 m/Mpc

1000 m/km
≈ 3.0857× 1019

H0 ≈ 2.208× 10−18 × 3.0857× 1019 ≈ 68.15 km/s/Mpc (11)

3.9 Discussion of the Cosmological Anchor

The calculated value H0 ≈ 68.15 km/s/Mpc is derived without any free parameters or
model fitting. It relies exclusively on the measured CMB temperature and the identifica-
tion of the fine-structure constant α as the geometric scaling of the ground state.

• Comparison with Planck (2018): The Planck result is 67.4 ± 0.5 km/s/Mpc.
Our result deviates by approximately +1.0%.

• Comparison with SH0ES (2019): The local ladder measurement is 74.0 ± 1.4
km/s/Mpc. Our result supports the "Early Universe" (CMB) measurements.

• Methodological Implication: The high precision of this result suggests that the
"Hubble Tension" may not be a crisis of measurement, but a confirmation that the
Universe operates as a geometrically closed system where micro-constants (α) and
macro-parameters (H0) are rigidly locked.

Result: WILL Relational Geometry successfully bridges Quantum Mechanics (WILL
RG Part III) and Cosmology (WILL RG Part I and II), yielding a theoretically grounded
value for H0 that matches observations.

4 Phase Evolution and the Geometric Origin of the
CMB

In the WILL Relational Geometry framework, the history of the Universe is not measured
by absolute Newtonian time, but by the accumulation of relational phase, o. Having
established the Universal Horizon scale (H0) and the kinematic projection of the ground
state (α), we now derive the epoch of "First Light" (Recombination) as a necessary
geometric transition, rather than a thermodynamic accident.

4.1 The Mechanism of Expansion: Cumulative Phase Divergence

In WILL RG Part I (Section 16.5), we derived the universal precession law for any bound
relational system. This law describes the irreducible phase shift (angular defect) accumu-
lated over one orbital cycle due to the system’s relational energy density Q2.

∆ϕ =
2πQ2

1− e2
(12)

To describe the global evolution of the Universe, we apply this law to the Cosmolog-
ical Ground State. This state is defined by three strict geometric conditions enforced
by the Principle of Isotropy and the Part III derivation of atomic stability:
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1. Global Isotropy (Circular Limit): The vacuum state of the Universe is maxi-
mally symmetric, implying zero eccentricity.

e → 0

2. Ground State Coupling: The kinematic projection of the vacuum is defined by
the fine-structure constant α (see Part III), which sets the fundamental scaling of
the electromagnetic field.

βvac ≡ α

3. Energetic Closure: For a closed equilibrium system, the total relational shift
norm is governed by the closure condition κ2 = 2β2, yielding:

Q2 = β2 + κ2 = 3β2

4.2 Derivation of the Linear Divergence Rate

Substituting these cosmological conditions (e = 0, β = α) into the general precession law
(12) yields the Fundamental Vacuum Shift per geometric cycle (2π):

∆ϕ(vac) =
2π(3α2)

1− 0
= 2π · 3α2 (13)

This equation states that for every complete rotation of the universal phase (2π), the
relational fabric accumulates a divergence of 2π · 3α2.

We can now define the Rate of Divergence (angular velocity of the shift) by nor-
malizing the cycle shift by the cycle length (2π):

dωshift

do
=

∆ϕ(vac)

2π
= 3α2 (14)

Consequently, the Cumulative Phase Shift ωshift(o) at any arbitrary phase depth
o is the integral of this constant divergence rate. This represents the linear accumulation
of relational difference—or "expansion"—over time:

ωshift(o) =

∫ o

0

3α2 do = 3α2 · o (15)

Thus, the cosmological expansion is identified not as a stretching of space, but as the
inevitable linear accumulation of the ground-state precession phase.

4.3 The Phase Horizon Depth (omax)

We first determine the maximum phase depth of the observable Universe. The expan-
sion of the Universe is defined in WILL RG (Part I) as the divergence of phase states
(precession) driven by the ground-state energy density.

The cumulative phase shift ωshift as a function of orbital phase o and the electromag-
netic coupling α (where Q2 → 3α2) is given by:

ωshift(o) = 3α2 · o (16)

The Event Horizon is defined as the point where the cumulative phase shift reaches
one full geometric cycle (2π), at which point causal coherence with the observer is lost.
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Definition 4.1 (Universal Phase Horizon). The maximum observable phase depth, omax,
is the value of o such that ωshift = 2π:

3α2 · omax = 2π =⇒ omax =
2π

3α2
(17)

Using the standard value α ≈ 7.297× 10−3:

omax =
6.283185

3 · (5.325× 10−5)
≈ 39,330 radians (18)

This dimensionless number represents the "winding count" of the Universe from the Sin-
gularity to the current Hubble Horizon.

4.4 The Unit Phase Transition: Geometry of Transparency

In a relational geometry, physical interaction is limited by the radius of curvature. We
define the transition from an opaque (coupled) state to a transparent (free) state using
the Unit Phase Condition.

[The Small-Angle Limit of Connectivity] A system behaves as a coherent, coupled
"plasma" only as long as the accumulated phase o satisfies the small-angle approximation
sin(o) ≈ o. The critical breakdown of this linearity occurs at:

ocrit = 1 radian (19)

Geometric Justification: At o = 1, the arc length of the causal propagation (S)
equals the radius of curvature of the system (R).

• For o < 1: S < R. The mean free path is dominated by the system’s curvature.
Photons are trapped (Opaque Era).

• For o > 1: S > R. Causal paths decouple from the local curvature. Photons
propagate freely (Transparent Era).

4.5 Derivation of the Recombination Epoch (trad)

We can now convert the geometric phase ocrit = 1 into a chronological age, trad. Let TH

be the Hubble Time (the total age corresponding to the horizon omax), defined by the
derived constant H0.

TH =
1

H0

Assuming a linear mapping between phase accumulation and time in the early Universe
(prior to "dark energy" dominance), the time per radian is:

trad =
TH

omax

(20)
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Numerical Calculation

Using the WILL-derived value H0 ≈ 68.15 km/s/Mpc (2.208× 10−18s−1):

TH =
1

2.208× 10−18
≈ 4.529× 1017 s ≈ 14.35× 109 years

Substituting omax ≈ 39, 330:

trad =
14.35× 109 years

39, 330
(21)

trad ≈ 364, 860 years (22)

4.6 Conclusion

The calculated time trad ≈ 365, 000 years corresponds remarkably well with the standard
cosmological dating of the Recombination Epoch (approx. 378,000 years), when the
CMB was emitted.

In WILL Relational Geometry, the "birth of light" is not an arbitrary thermal accident
but a geometric necessity. The Universe became transparent exactly when its causal age
reached one radian of phase.

Epistemic Summary

• 0 < o < 1: The Era of Unity (Plasma). Linear coupling dominates.

• o = 1: The Geometric Horizon. Arc length = Radius. Decoupling.

• o > 1: The Era of Structure. Light travels freely as S > R.

5 Derivation of vacuum tension
Before analyzing the acoustic response of the Cosmic Microwave Background, we must
strictly define the mechanical properties of the medium. In WILL Relational Geometry,
the vacuum is not a container filled with energy; rather, spacetime itself is a projection of
a saturated energy configuration. Therefore, the properties of the vacuum—its maximal
density and its tension—are derived directly from the geometric capacity of the Global
Horizon.

6 Local Cosmological Term Λ in RG (Eliminating "Dark
Energy")

We using derived

Lemma 6.1 (Normalization Identity). In WILL Relational Geometry, local energy density
and its maximal counterpart are related by

ρ(r) =
κ2c2

8πGr2
, (23)

ρmax(r) =
c2

8πGr2
. (24)
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The ratio of these quantities defines the dimensionless geometric projection parameter κ2:

κ2 =
ρ

ρmax

Theorem 6.2 (Unified Geometric Field Equation). For a static, spherically symmetric
configuration, the relationship between geometry and energy density is governed by the
equation:

d

dr

(
r κ2

)
=

8πG

c2
r2ρ(r) . (25)

This expression reproduces the tt-component of the Einstein field equations inside a spher-
ical mass distribution when written in terms of the areal radius r.

Proof. Starting from the standard Tolman-Oppenheimer-Volkoff (TOV) form for metric
component grr:

1

r2
d

dr

[
r

(
1− 1

grr

)]
=

8πG

c2
ρ(r). (26)

Using the identity κ2 = 1−1/grr (derived from the closure condition on S2), we substitute
directly:

1

r2
d

dr

[
r κ2

]
=

8πG

c2
ρ(r).

Multiplying by r2 yields Eq. (25).

6.1 Derivation of Vacuum Density

We now determine the intrinsic density of the vacuum by applying the conservation laws
derived in Sec. 4 to the Universe as a whole.

Theorem 6.3 (Vacuum Energy Partition). In a globally closed relational system in equi-
librium, the effective vacuum energy density ρΛ is geometrically constrained to exactly
two-thirds (Ωpot = 2/3) of the saturation limit ρmax.

ρΛ(r) = Ωpotρmax(r) =
2

3
ρmax(r).

Proof. We treat the vacuum as a self-contained relational system subject to the Lemmas
of Closure and Conservation.

1. Total Projection Budget (Q2). The total transformation resource available to
the system is the sum of its relational carriers projections:

Q2 = κ2 + β2.

2. Equilibrium Condition. According to the Energetic Closure Theorem, a stable,
closed system must satisfy the invariant exchange rate:

κ2 = 2β2.

3. The Structural Share. To find the fraction of the total resource allocated strictly
to the structural (potential) sector (Ωpot), we substitute the closure condition into the total
budget equation:

Ωpot =
κ2

Q2
=

κ2

κ2 + β2
=

2β2

2β2 + β2
=

2

3
.
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4. Density Mapping. Since the local energy density ρ is linearly proportional to
the squared projection κ2 (via the Unified Field Equation), the density of the vacuum ρΛ
must represent the same Ωpot = 2/3 proportion of the maximal density ρmax.

Thus,

ρΛ(r) = Ωpotρmax(r) =
2

3

c2

8πGr2
=

c2

12πGr2
.

6.2 Derivation of Vacuum Pressure (Equation of State)

Unlike in standard cosmology, where the equation of state w = −1 is assumed, in RG it
is derived from the tension of the geometric field.

Theorem 6.4 (Vacuum Pressure). The intrinsic pressure of the vacuum geometry is
negative and proportional to its density:

PΛ(r) = − ρΛ(r) c
2. (27)

Proof. Pressure in a static field arises from the gradient of the potential. From the radial
balance relation (derived from conservation of stress-energy):

P (r) =
c4

8πG

1

r

dκ2

dr
.

Substituting the vacuum potential κ2 = Rs/r:

dκ2

dr
= −Rs

r2
= −κ2

r
.

Therefore:
P (r) =

c4

8πG

1

r

(
−κ2

r

)
= − κ2c4

8πGr2
= −

(
κ2c2

8πGr2

)
c2.

Recognizing the term in parentheses as density ρ(r), we obtain:

P (r) = −ρ(r)c2.

This confirms that the "Dark Energy" equation of state w = P/ρc2 = −1 is a structural
property of the projection gradient.

6.3 Legacy Correspondence: Mapping to General Relativity

To demonstrate consistency with the standard cosmological model (ΛCDM), we translate
our scalar results into the tensor formalism of General Relativity.

Remark 6.5 (Translation to Metric Formalism). The derived vacuum density ρΛ corre-
sponds to a vacuum stress-energy tensor of the form:

T (vac)
µν =̂ − ρΛ(r) c

2 gµν . (28)
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Substituting this into the Einstein equations yields an effective, radially dependent
cosmological term:

Λ(r) =
8πG

c4
(ρΛc

2) =
8πG

c2

(
Ωpotc

2

8πGr2

)
=

Ωpot

r2
=

2

3r2
. (29)

Summary

In RG, the cosmological constant is not an arbitrary parameter but an emergent
property of geometric normalization:

Λ(r) =
Ωpot

r2
=

2

3r2
.

What GR interprets as "Dark Energy" is identified here as the structural energy
density required to maintain the geometric closure of the vacuum.

6.4 Geometric Signature of Spatial Dimension

A striking topological feature emerges when we express the effective vacuum density in
natural geometric units. Substituting ρΛ = 2

3
ρmax into the explicit definition of ρmax:

ρΛ(r) =
2

3
· c2

8πGr2
=

c2

12πGr2
. (30)

Stripping away dimensional scaling factors (c,G, r) reveals a purely dimensionless ge-
ometric coefficient:

ρ̂Λ =
1

12π
=

1

3× 4π
(31)

This factorization suggests a profound geometric origin for 3D space:

• The factor 4π represents the intrinsic capacity of the relational carrier S2.

• The factor 1/3 suggests an equipartition of this 2D resource across three orthogonal
spatial axes.

This hints that the dimensionality of observable space is not arbitrary but is a struc-
tural consequence of distributing the S2 energy budget into a volume.

7 The Geometric Origin of Galactic Rotation Curves
(Eliminating "Dark Matter")

We now apply the structural density of the vacuum (ρΛ) to the domain of galactic dy-
namics. We demonstrate that the phenomenon typically attributed to "Dark Matter" can
be explained as the necessary observational consequence of the interaction between the
vacuum’s structural capacity and the system’s relational shift (Q2).

Crucially, we show that the geometric coefficients arising from the vacuum partition
and the virial dynamic state naturally cancel each other. This intrinsic symmetry re-
produces the exact Newtonian density profile required for flat rotation curves without
introducing any ad-hoc parameters or non-baryonic mass.
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7.1 The Vacuum-Dynamic Equivalence

Lemma 7.1 (Newtonian Halo Requirement). To sustain a flat rotation curve with con-
stant velocity V (where β = V/c) at a galactic radius r where baryonic matter is negligible,
classical mechanics postulates a Singular Isothermal Sphere (SIS) with the density profile:

ρN(r) =
V 2

4πGr2
. (32)

This standard result is derived from the mass distribution condition M(r) = V 2r/G, which
implies ρ(r) = 1

4πr2
dM
dr

.

Theorem 7.2 (Vacuum-Dynamic Equivalence). The structural vacuum density ρΛ, when
excited by the dynamic state of a stable galactic system (Q2), identically reproduces the
Newtonian halo density.

ρWILL ≡ ρN (33)

Proof. The derivation proceeds in three steps: establishing the vacuum capacity, defining
the dynamic state, and demonstrating the geometric cancellation.

1. The Structural Vacuum Density (ρΛ). From the Vacuum Energy Partition The-
orem (Part B), the effective vacuum density is constrained by the global closure condition
(Ωpot = 2/3) to be exactly two-thirds of the maximal saturation density. This introduces
the geometric factor 1/12π:

ρΛ(r) =
2

3
ρmax(r) =

2

3

(
c2

8πGr2

)
=

c2

12πGr2
. (34)

Note that the factor 1/12π can be viewed as the spherical capacity (1/4π) distributed
across three spatial dimensions (1/3).

2. The Dynamic State (Q2). The local intensity of the field is defined by the square
of the relational shift vector Q. For a gravitationally bound, energy-closed (virial-like
equilibrium) system, the closure condition κ2 ≈ 2β2 implies a dynamic multiplier of 3:

Q2 = κ2 + β2 ≈ 2β2 + β2 = 3β2 = 3
V 2

c2
. (35)

3. The Geometric Cancellation (Synthesis). The observable vacuum excitation
density ρWILL is the product of the vacuum capacity and the dynamic state:

ρWILL = Q2 · ρΛ. (36)

Substituting the terms from steps 1 and 2:

ρWILL =

(
3
V 2

c2

)
︸ ︷︷ ︸

Dynamic Factor

·
(

c2

12πGr2

)
︸ ︷︷ ︸
Vacuum Factor

. (37)

Here, the Virial factor (3) and the Vacuum Geometry factor (1/12) exactly cancel to
produce the Newtonian geometric factor (1/4):

ρWILL =
3

12

(
V 2

πGr2

)
=

1

4

(
V 2

πGr2

)
=

V 2

4πGr2
. (38)
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Conclusion. Comparing this result with the standard requirement Eq. (32), we find an
exact identity:

ρWILL(r) ≡ ρN(r)

The "Dark Matter" halo is thus identified not as a substance, but as the weight of the
vacuum structure itself (Q2ρΛ).

Corollary 7.3 (Non-Existence of Dark Matter). Since ρWILL provides 100% of the re-
quired dynamical mass density purely through geometric relations, the hypothesis of Dark
Matter is redundant. The observed flat rotation curves are the direct consequence of the
linear growth of the vacuum’s effective mass (Mvac ∝ r) compensating for the radial dis-
tance, governed by the invariant ratio:

Dynamic Intensity (3)
Vacuum Partition (1/3)

= 1.

8 Geometric Expansion Law: Distant Supernova Flux
Levels Test

Having derived the Hubble parameter (H0 ≈ 68.15 km/s/Mpc) exclusively from micro-
physical constants (α, T0), we rigorously test the resulting cosmological metric against the
expansion history of the late Universe using Type Ia Supernovae.

WILL Relational Geometry establishes a generative approach where the cosmological
density parameters are not free variables to be fitted, but fixed projection ratios dictated
by the topology of the closed carriers.

8.1 Geometric Partitioning of the Energy Budget

The total relational budget Q2 of a closed system is conserved and partitioned between
two carriers. The Closure Condition (κ2 = 2β2), established in the methodological frame-
work, governs this partition. Consequently, the Cosmological Density Parameters (Ω) are
defined as the normalized weights of these projections relative to the total shift Q2:

• Matter Density (Ωm): Corresponds to the Kinetic Projection (S1).

Ωm ≡ Ωkin =
β2

Q2
=

β2

3β2
=

1

3
(39)

• Dark Energy (ΩΛ): Corresponds to the Structural Projection (S2).

ΩΛ ≡ Ωpot =
κ2

Q2
=

κ2

1.5κ2
=

2

3
(40)

Prediction: The observed cosmic energy density is a direct manifestation of the S2

topology, which imposes a strict 2 : 1 ratio between Structural Tension (ΩΛ) and Kinetic
Mass (Ωm).
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8.2 The Hubble Diagram Test Protocol

We test this geometric prediction against the full Pantheon+ dataset (N = 1701 SNe;
Scolnic et al., 2022). To ensure reproducibility, our analysis pipeline loads raw data
directly from the official repository.

Distinguishing Shape vs. Absolute Scale: Standard cosmological analyses of-
ten float H0 and the absolute magnitude (M) as degenerate nuisance parameters. Our
protocol is strictly predictive:

1. We use the derived Hubble parameter H0 = 68.15 km/s/Mpc as a fixed input.

2. We use the geometric density parameters Ωm = 1/3 and ΩΛ = 2/3.

3. We calculate the theoretical Distance Modulus µWILL(z) ab initio:

µWILL(z) = 5 log10

c(1 + z)

H0

∫ z

0

dz′√
1
3
(1 + z′)3 + 2

3

+ 25 (41)

The Expected Calibration Offset: The Pantheon+ dataset is calibrated to the
SH0ES Cepheid scale (H0,SH0ES ≈ 73.04 km/s/Mpc). Since our microphysically derived
H0 (68.15) differs from this local calibration, we theoretically expect a constant vertical
offset in the distance modulus:

∆µexpected = 5 log10

(
73.04

68.15

)
≈ 0.150 mag (42)

Any deviation beyond this constant offset would indicate a failure of the geometric ex-
pansion law (Ω ratios).
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Figure 2: Ab Initio Prediction of Cosmic Expansion. The top panel shows the
WILL RG prediction (red line) compared to Pantheon+ binned data (black points) after
aligning the calibration anchor. The bottom panel displays the residuals. The curve is
not a fit; it is generated purely from microphysics (TCMB, α) and geometric partitioning
(Ω = 1/3, 2/3).

8.3 Residual Analysis and Interpretation

The analysis reveals a systematic global offset of ∆µ ≈ −0.151 mag. This aligns precisely
with the theoretical expectation for the Hubble Tension scale difference (0.150 mag). The
stability of this offset across redshifts confirms that the deviation is purely a calibration
scaling issue, not a failure of the geometric expansion law.

Shape Validation: Subtracting this constant calibration offset reveals the fidelity of
the Geometric Shape. As shown in Table 3, the shape-corrected residuals remain largely
within ±0.02 mag, confirming the validity of the 2 : 1 geometric partitioning.

8.4 Conclusion: The Geometric Nature of Dark Energy

The observed expansion history is accurately reproduced by a closed system in which ΩΛ =
2/3. The fact that the residual shape deviation is negligible (≤ 0.02 mag) suggests that the
"Dark Energy" parameter is physically identified as the Structural Projection weight
of the vacuum geometry. The Universe maintains the structural integrity of its global
horizon through this requisite tension, eliminating the need for an arbitrary cosmological
constant fit.
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Mean z N SNe Raw Residual Shape Deviation Error (SEM)
0.03 741 -0.140 mag +0.011 mag ±0.007

0.16 207 -0.138 mag +0.013 mag ±0.010

0.30 241 -0.136 mag +0.015 mag ±0.009

0.50 78 -0.171 mag -0.020 mag ±0.016

0.71 45 -0.173 mag -0.022 mag ±0.019

Table 3: Precision of the Geometric Metric. The "Raw Residual" is dominated by
the Hubble Tension offset (≈ −0.151 mag). The "Shape Deviation" (Raw minus Offset)
demonstrates that the WILL RG geometry tracks the expansion history with ∼ 0.02 mag
precision without free parameters.

9 The Geometric Cooling Law
Having determined the phase depth of the current epoch (omax ≈ 39, 330) and the phase
of recombination (orec = 1), we can rigorously derive the scaling relation between the
geometric phase o and the physical temperature T .

9.1 The Structural Scaling Exponent

Observations indicate that the Universe has expanded by a factor of z ≈ 1100 since the
time of recombination (Trec ≈ 3000 K). In WILL Relational Geometry, the ratio of time
(phase) between these epochs is much larger (omax/1 ≈ 39, 330).

The relationship between the geometric evolution (Phase o) and the spatial expansion
(Scale factor a ∝ T−1) is governed by a power law:

a(o) ∝ on =⇒ T (o) ∝ o−n (43)

By comparing the Phase Ratio (Rϕ) to the Temperature Ratio (RT ):

n =
ln(RT )

ln(Rϕ)
=

ln(Trec/T0)

ln(omax/orec)
≈ ln(1100)

ln(39330)
≈ 0.662 (44)

9.2 Identification with vacuum tension

The derived exponent n ≈ 0.662 corresponds to the Structural Projection Weight:

Ωpot ≡ ΩΛ =
2

3
(45)

This reveals a Cosmological Scaling Law: The expansion of the spatial scale a is driven
by the structural tension of the vacuum (ΩΛ).

1 + z =
(omax

o

)2/3
(46)

9.3 Validation: Predicting Recombination Temperature

We can now reverse the logic to predict the temperature of the Universe at the moment
of geometric transparency (o = 1), using only the current CMB temperature and the
vacuum tension ΩΛ = 2/3.
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Trec(pred) = T0 · (omax)
2/3 (47)

Substituting the values (T0 = 2.7255 K, omax = 39, 330):

Trec(pred) = 2.7255× (39, 330)0.666... (48)

(39, 330)2/3 ≈ 1156.4 (49)

Trec(pred) ≈ 2.7255× 1156.4 ≈ 3152 K (50)

Result: The predicted temperature (≈ 3150 K) is in agreement with the theoretical
ionization temperature of Hydrogen (approx. 3000-3200 K), at which the plasma becomes
neutral and transparent.

This strongly suggest that the thermal history of the Universe is fully determined by:

1. The Current Horizon Depth (omax derived from α).

2. The vacuum tension (ΩΛ = 2/3).

10 Geometric Origin of the CMB Acoustic Spectrum
Having established the value of the Hubble parameter H0 from the fundamental constants
α and TCMB, we now apply the WILL Relational Geometry framework to the analysis of
the Cosmic Microwave Background (CMB) acoustic peaks.

Standard cosmology (ΛCDM) interprets these peaks as acoustic oscillations within a
3D fluid, requiring the introduction of non-baryonic Dark Matter (≈ 26%) to adjust the
gravitational potential and fit the observed peak heights and positions. In contrast, we
demonstrate that the peak structure is a natural consequence of the resonant harmonics
of the S2 relational carrier, subject to simple mass loading by baryonic matter.

10.1 Quantitative Analysis: The Baryonic Consistency Test

Objective: Determine if the vacuum tension derived from WILL Relational Geometry
(ΩΛ = 2/3), when loaded with the standard baryonic mass known from nuclear physics
(Ωb ≈ 0.048), reproduces the observed acoustic peaks without requiring Dark Matter.

1. The Vacuum Resonance Prediction (lvac). In Section 9.2, we established that the
maximal saturation density ρmax is determined by the electromagnetic closure condition
Q2

EM = 3α2, where α ≡ β1 represents the ground Kinematic Projection (derived in
Part III).

Since α defines the saturation density (ρmax), its inverse 1/α defines the Linear Kine-
matic Scale (wavenumber) of the vacuum. However, for the global vacuum horizon, this
purely kinematic scale is modulated by the total geometric impedance, which includes
both the metric basis (1) and the derived structural tension (ΩΛ = 2/3).

The theoretical unloaded vacuum mode is therefore rigorously defined as:

ℓvac =
1

α︸︷︷︸
Kinematic Scale

× (1 + ΩΛ)︸ ︷︷ ︸
Geometric Impedance

= 137.036×
(
1 +

2

3

)
≈ 228.39 (51)
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2. The Mass Loading Mechanism. The observed acoustic peaks represent standing
waves on this vacuum carrier. Matter acts as an inertial load, reducing the wave speed.

In standard mechanics, tension and inertia are independent properties. However, in
WILL Relational Geometry, such separation violates the core principle SPACETIME ≡
ENERGY. The vacuum’s energy density ρΛ constitutes its total mechanical existence;
therefore, it necessarily provides both the structural tension (restoring force) and the
self-inertia (resistance to acceleration).

Consequently, the condition ρvac(inertia) ≡ ρΛ(tension) is not a postulate but a strict iden-
tity required by the equivalence principle. The frequency shift factor K is thus determined
simply by the ratio of the Vacuum Density to the Total Density:

K =

√
ρΛ

ρΛ + ρmatter

(52)

3. Scenario A: Standard Cosmology with Dark Matter. Standard ΛCDM as-
sumes the Universe is dominated by Dark Matter (Ωdm ≈ 0.26). The total inertial load
would be Ωtotal = Ωb + Ωdm ≈ 0.31. Substituting this into the loading equation:

KDM =

√
0.667

0.667 + 0.31
≈ 0.827

Applying this shift to the vacuum mode:

ℓpred(DM) = 228.39× 0.827 ≈ 188.9

This result deviates from the observed Planck peak (ℓobs ≈ 220.6) by ≈ −14%, demon-
strating that the WILL vacuum tension cannot support the inertial load of Dark Matter.

4. Scenario B: Pure Baryonic Inventory (WILL RG). We now test the scenario
where the Universe contains only standard baryonic matter consistent with BBN (Ωb ≈
0.048). The inertial shift factor is:

KBary =

√
0.667

0.667 + 0.048
≈ 0.9658

The predicted peak position is:

ℓpred(WILL) = 228.39× 0.9658 ≈ 220.59 (53)

Conclusion. The WILL prediction (ℓ ≈ 220.59) matches the observed Planck value
(ℓ ≈ 220.60) with a precision of ∼ 0.01%. This extraordinary agreement implies that the
"missing mass" problem is an artifact of fluid models that lack inherent vacuum tension.
When the geometric tension ΩΛ = 2/3 is accounted for, the standard inventory of baryonic
matter derived from BBN is exactly sufficient to explain the CMB acoustic spectrum.

10.2 Topological Selection: The S2 Signature

The first step is to identify the topology of the universal resonator. Different geometries
support distinct harmonic series:

antonrize.github.io/WILL 23 DOI: 10.5281/zenodo.17115270

https://antonrize.github.io/WILL/
https://doi.org/10.5281/zenodo.17115270


• S1 (String) or S3 (3D Cavity): These topologies generate integer harmonic series
(1 : 2 : 3 : . . . ).

• S2 (Membrane/Surface): The vibrational modes of a spherical surface are gov-
erned by the roots of Bessel functions (J0), producing a non-integer harmonic series
(1 : 2.3 : 3.6 : . . . ).

The observed CMB multipole moments from Planck (2018) are:

ℓ1 ≈ 220.59, ℓ2 ≈ 537.5, ℓ3 ≈ 810.8

The observed ratios are 1.00 : 2.44 : 3.68. This pattern is not naturally produced by simple
3D cavity harmonics, while it emerges naturally from surface-based resonant spectra. This
provides strong evidence that the fundamental oscillations of the Universe occur on a 2D
relational carrier (S2) rather than in a 3D volume.

10.3 The Mass Loading Mechanism

We model the CMB spectrum as the vibration of the potential carrier (S2) "loaded" by
the inertia of matter. This is analogous to the "mass loading" effect in acoustics, where
the addition of mass to a membrane lowers its resonant frequency without changing the
geometric ratios of the harmonics.

The observed frequency ωobs is related to the pure vacuum frequency ωvac by the ratio
of tension to total inertia:

ωobs = ωvac

√
ρΛ

ρΛ + ρmatter

(54)

where:

• ρΛ is the tension of the vacuum geometry.

• ρmatter is the mass density of the baryonic load.

In RG, ρΛ parametrizes the restoring capacity of the S2 carrier (structural projection),
while ρmatter contributes solely to inertia; therefore their ratio enters exactly as in a
tensioned membrane.

10.4 Quantitative Derivation

We perform a direct calculation to determine the required matter density ρmatter to shift
the theoretical vacuum peaks to the observed positions.

1. Input Parameters. We utilize the values derived in the previous section:

• vacuum tension (Tension): ρΛ ≈ 1.938× 10−27 kg/m3.

• Saturation Density: ρmax ≈ 2.908× 10−27 kg/m3.
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2. The Pure Vacuum State. Based on the S2 geometry and the Horizon scale RH

derived from α, the fundamental vacuum mode (unloaded) is calculated to be at multipole
ℓvac ≈ 227.5. The first acoustic peak allows us to calculate the required baryon density,
which yields a value consistent with Big Bang Nucleosynthesis expectations; the higher
peaks then test the predicted harmonic structure. This implies a frequency shift ratio
relative to the derived peak (ℓpred(WILL) = 220.59):

K =
ℓpred(WILL)

ℓvac
=

220.59

227.5
≈ 0.9697

3. Solving for Matter Density. We invert the mass loading equation to solve for the
unknown matter density:

K2 =
ρΛ

ρΛ + ρmatter

⇒ ρmatter = ρΛ

(
1

K2
− 1

)
Substituting the values:

ρmatter = (1.938× 10−27)

(
1

(0.9697)2
− 1

)
ρmatter ≈ 1.23× 10−28 kg/m3

10.5 Results and Implications

Baryonic Fraction. We compare the derived matter density to the total saturation
density ρmax to find the cosmic matter fraction Ωb:

Ωb =
ρmatter

ρmax

=
1.23× 10−28

2.908× 10−27
≈ 0.0423 (4.2%)

Conclusion: No Additional Non-Baryonic Component Required Within WILL
RG This result (Ωb ≈ 4.2%) is in excellent agreement with the standard inventory of
baryonic matter (Ωb ≈ 4.8%) derived from Big Bang Nucleosynthesis and ΛCDM.

Within the RG acoustic framework, no additional non-baryonic mass component is
required to reproduce the observed peak positions. If Dark Matter were present in the
amounts predicted by ΛCDM (Ωdm ≈ 26%), the total mass load would be Ωtotal ≈ 31%.
This would result in a shift factor of K ≈

√
1/1.31 ≈ 0.87, shifting the first acoustic peak

to ℓ ≈ 198, which is in tension with the observed value within the context of this model.

Summary of Findings

The acoustic structure of the Universe is fully explained by:

1. Topology: An S2 relational carrier (generating the 1 : 2.4 : 3.7 harmonic
signature).

2. Composition: A vacuum tension ρΛ loaded by ≈ 4.2% baryonic matter.

No Dark Matter or Dark Energy parameters are required. The observed CMB
spectrum is the vibrational signature of a baryonic-loaded S2 vacuum geometry.
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11 Resolution of the Low Quadrupole Anomaly

11.1 The Missing Power Problem

A persistent challenge to the Standard Model (ΛCDM) is the anomalously low amplitude
of the quadrupole moment (ℓ = 2) in the CMB power spectrum. While ΛCDM predicts
a scale-invariant plateau (Dℓ ≈ 1.0 normalized) at low multipoles, Planck observations
show a suppressed power of Dℓ=2 ≈ 0.2. In the standard framework, which treats the early
Universe as a 3D fluid without surface tension, there is no physical mechanism to suppress
large-scale modes; thus, the discrepancy is attributed to statistical "Cosmic Variance."

11.2 vacuum tension as a High-Pass Filter

In WILL Relational Geometry, the Universe is treated as a topologically closed surface
(S2) with a vacuum energy density P = −ρΛc

2. Physically, this negative pressure man-
ifests as vacuum tension (Tension). Unlike a gas cloud, a tensioned membrane resists
global deformation. The energy required to deform the global curvature (low ℓ) is sig-
nificantly higher than the energy required to create local ripples (high ℓ). Consequently,
the vacuum tension acts as a geometric high-pass filter, suppressing the amplitude of the
lowest harmonics.

The suppression factor S(ℓ) for the power spectrum is governed by the ratio of the
Restoring Force (vacuum tension) to the Driving Force (Matter Inertia):

P (ℓ) ∝

(
1

1 +
Reff

λℓ

)2

(55)

where:

• λℓ = ℓ(ℓ+1) is the Laplacian eigenvalue for the sphere (geometric scaling). For the
quadrupole (ℓ = 2), λ2 = 6.

• Reff is the effective Tension-to-Inertia ratio.

11.3 Quantitative Derivation of the Inertial Corridor

We calculate the suppression using the precise densities derived in the previous section,
with zero free parameters. The Base Ratio of vacuum tension to baryonic mass is:

Rbase =
ρΛ
ρbary

=
1.9384× 10−27

1.2315× 10−28
≈ 15.74 (56)

In Relational Geometry, the effective inertia of matter depends on the coupling to the
potential (Q2 scaling). We evaluate the physical limits of this coupling as established in
the galactic dynamics section:

Scenario A: The Structural Limit (Q2 = 3
2
κ2) If the inertia is dominated by the

structural potential term, the coupling factor is 1.5.

Rstruct =
15.74

1.5
≈ 10.49
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Substituting into the suppression equation for ℓ = 2:

Amplitude ≈ 1

1 + 10.49
6

≈ 0.364 ⇒ Pℓ=2 ≈ (0.364)2 ≈ 0.132

Scenario B: The Kinetic Limit (Q2 = 3β2) If the inertia follows the full kinetic
coupling observed in rotation curves (3×), the coupling factor is 3.0.

Rkin =
15.74

3.0
≈ 5.25

Substituting into the suppression equation for ℓ = 2:

Amplitude ≈ 1

1 + 5.25
6

≈ 0.533 ⇒ Pℓ=2 ≈ (0.533)2 ≈ 0.285

11.4 Comparison with Observation

The WILL RG framework predicts a theoretical "Inertial Corridor" for the quadrupole
power.

Figure 3: Resolution of the Low Quadrupole Anomaly. The plot compares the
normalized power of the quadrupole moment (ℓ = 2) against theoretical predictions.
The Standard Model (ΛCDM, red dashed line) assumes a scale-invariant 3D fluid,
predicting a normalized power of ≈ 1.0, which overestimates the observation by a factor
of 5. WILL Relational Geometry (green shaded region) treats the Universe as a
tensioned S2 membrane, where vacuum tension acts as a high-pass filter. The predicted
"Inertial Corridor" is bounded by the structural limit (Q2 = 1.5κ2, lower bound ≈ 0.13)
and the kinetic limit (Q2 = 3β2, upper bound ≈ 0.28). The Planck 2018 observation
(Dℓ=2 ≈ 0.20, black point) falls precisely within the center of the WILL RG corridor,
confirming the geometric suppression of large-scale modes due to vacuum tension.

Conclusion: The observed suppression of the quadrupole moment is consistent with
the vacuum tension predicted by the S2 topology. Rather than relying on a statistical
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Model / Source Predicted Power (Dℓ=2) Status

Standard Model (ΛCDM) ≈ 1.00 Overprediction (×5)

WILL RG (Structural Bound) ≈ 0.132 Lower Limit

WILL RG (Kinetic Bound) ≈ 0.285 Upper Limit

Planck 2018 (Observed) ≈ 0.20 Within Predicted Corridor

Table 4: The observed quadrupole power falls precisely within the predicted range of the
WILL RG tension model, while ΛCDM overpredicts the power by an order of magnitude.

anomaly, WILL RG offers a deterministic geometric mechanism for this phenomenon,
providing a physically motivated alternative to the scale-invariant 3D fluid hypothesis.

11.5 The Geometry of Structure: Explaining the Alignments

Beyond the suppression of power, the large-scale anomalies include two significant direc-
tional features:

1. Internal Alignment: The principal axes of the quadrupole (ℓ = 2) and octopole
(ℓ = 3) are aligned to within ∼ 10◦, defining a preferred plane.

2. Ecliptic Alignment: This preferred plane is highly correlated with the Solar Sys-
tem’s ecliptic plane and the equinoxes.

Standard cosmology dismisses these as statistical flukes ("The Axis of Evil") or fore-
ground contamination. WILL RG offers a deterministic physical explanation based on
the mechanics of the S2 carrier.

11.6 Nodal Coupling on a Tensioned Surface

In a 3D volume (S3), vibrational modes are geometrically independent. However, on a
2D surface (S2) subject to vacuum tension (P = −ρc2), the modes are physically coupled
to minimize surface energy.

When the quadrupole mode (ℓ = 2) establishes a principal axis of deformation (break-
ing spherical symmetry into ellipsoidal), it creates an anisotropic tension field on the
manifold. Subsequent modes, such as the octopole (ℓ = 3), minimize their energy by
aligning their nodal lines with the established stress field. Thus, Planarity and Align-
ment are not statistical anomalies but energetic requirements for a coupled standing
wave system. The probability of such alignment in a random 3D field is < 0.1%, but in
a tensioned 2D system, it approaches unity. A quantitative treatment of mode coupling
is left for future work.

12 Galactic Dynamics: The Law of Resonant Interfer-
ence

We derive galactic dynamics strictly from the principle that Spacetime ≡ Energy. In
RG, "distance" is not a spatial separation in a void, but a difference in energy configu-
rations. Consequently, radial separation r must be expressible as a frequency potential
relative to the Global Horizon.
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12.1 The Fundamental Tone (f0)

Since the Universe is a topologically closed system with a causal horizon RH = c/H0, it
possesses a minimum energy state corresponding to the fundamental standing wave (The
Fundamental Tone):

f0 =
c

2πRH

=
H0

2π
. (57)

This frequency establishes the minimal energy floor for any interaction in the cosmos.
Associated with this tone is the Machian Acceleration Scale:

aMach = f0c =
H0c

2π
≈ 1.05× 10−10m/s2. (58)

12.2 Bifurcation of Resonance: Structural vs. Kinetic

Recall the total relational shift established in WILL Part I:

Q2 = κ2 + β2 = 3β2 =
3

2
κ2 (59)

1. Galaxies are physically realised as continuous potential fields (fluids/structure).
Their relational state is a smooth function κ(x⃗) on the S2 carrier. Hence, they
couple to the horizon via the Structural Channel with weight Ωpot =

κ2

Q2 = 2
3
.

aκ = Ωpot · aMach =
2

3

cH0

2π
=

cH0

3π
≈ 0.70× 10−10m/s2 (60)

2. Binaries are discrete orbital systems (point masses). Their relational state is a
periodic function β(θ) (where θ is the orbital phase) on the S1 carrier. Hence, they
couple via the Kinetic Channel with weight Ωkin = β2

Q2 = 1
3
.

aβ = Ωkin · aMach =
1

3

cH0

2π
=

cH0

6π
≈ 0.35× 10−10m/s2 (61)

This assignment is strictly enforced by the algebraic closure condition κ2 = 2β2. The
continuity of the potential field selects the S2 carrier for galaxies, while the discrete orbital
nature selects S1 for binaries.

Consequently, the resulting acceleration scales aκ = cH0/3π and aβ = cH0/6π are
topological invariants of the theory. This bifurcation rigorously explains why MOND’s
single universal parameter a0 fails for wide binaries (which require the kinetic scale) while
WILL RG accurately matches both regimes.

12.3 The Interference with Fundamental Tone

Consider a star orbiting at radius r. Its dynamic state is a superposition of two frequency
modes:

1. Local Kinetic Mode (νloc): Generated by the baryonic mass M . In the Newtonian
limit, the specific energy (velocity squared) is v2N .

2. Global Horizon Mode (νglob): Generated by the fundamental tone. The vacuum
at radius r is not empty but is energized by the horizon’s tension. The energy
capacity of this mode scales linearly with distance:

Eglob ∝ aMachr
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12.4 Constructive Interference

Since the star and the horizon are coupled parts of the same closed geometry, their ampli-
tudes interfere. The total kinetic energy state v2obs includes a Constructive Interference
Term (Geometric Mean). Kinetic energy is proportional to the square of the frequency
amplitude (v2 ∝ A2), the superposition of the local orbital wave function and the global
horizon standing wave results in an interference cross-term. For coupled harmonic modes,
this cross-term scales strictly as the geometric mean of the interacting energy densities.

v2obs = v2N︸︷︷︸
Local Self-Energy

+
√
v2N · (ΩaMachr)︸ ︷︷ ︸

Resonant Interference

(62)

where Ω = Ωkin or Ωpot depends on either structural or dynamical coupling of the system.

12.5 Conclusion

This equation derives the flat rotation curves of galaxies without invoking Dark Matter.
The "extra" velocity is simply the physical manifestation of constructive interference
between the local orbital frequency and the Universe’s fundamental tone. The rotation
curve remains flat because the system cannot decay below the energy floor supported by
the global resonance.

13 Empirical Verification: Galactic Dynamics

13.1 Motivation and Protocol

The central empirical challenge addressed here is the discrepancy between observed galac-
tic rotation velocities and the predictions of Newtonian gravity sourced solely by baryons.
Standard analyses often employ complex error weighting, likelihood maximization, and
galaxy-specific parameter tuning (e.g., varying mass-to-light ratios), which can obscure
the distinction between a model’s predictive power and its parametric flexibility.

Our objective is to assess whether a fixed physical prescription reproduces the kine-
matic structure of disk galaxies in a transparent, assumption-minimal manner. We adopt
a deliberately austere protocol:

1. No Parameter Tuning: No free parameters are adjusted per galaxy.

2. Fixed Mass-to-Light Ratios: We adhere to standard population synthesis values
without variation.

3. Raw Deviation Metrics: We evaluate raw residuals without weighting by obser-
vational uncertainties, preventing the suppression of physical systematics by error
bars.

13.2 Data

We utilize the SPARC database (Table 2), comprising 175 disk galaxies. Observed circular
velocities Vobs(r) and baryonic components (Vgas, Vdisk, Vbulge) are taken directly from the
catalog. To ensure physical causality, negative baryonic velocity components (artifacts of
observational noise decomposition) are truncated to zero prior to squaring.
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13.3 Baryonic Reference Model

The baryonic circular velocity is defined as:

V 2
b (r) = V 2

gas(r) + ΥdiskV
2
disk(r) + ΥbulgeV

2
bulge(r). (63)

Fixed Mass-to-Light Ratios: Unlike standard dark matter analyses that often treat
Υ∗ as a nuisance parameter to be fitted per galaxy, we enforce a strict global Stellar
Population Synthesis expectations for the 3.6 µm band (Lelli et al., 2016):

Υdisk = 0.5, Υbulge = 0.7.

applied uniformly across the entire sample. This eliminates "per-galaxy tuning" com-
pletely.

13.4 Dynamical Prescriptions Evaluated

Five distinct physical prescriptions are compared.

13.4.1 1. Newtonian Baseline

VNewt(r) = Vb(r).

13.4.2 2. LCDM with Abundance Matching (No Fitting)

To represent the Standard Model framework without allowing ad-hoc halo fitting (e.g.,
varying concentration or mass per galaxy), we employ a deterministic Abundance Match-
ing protocol. To ensure a strict evaluation of the standard paradigm, we utilize the Planck
2018 cosmological parameters (H0 = 67.4 km s−1 Mpc−1, h = 0.674) for all halo scaling
relations, independent of the derived scales tested in other models.

Stellar Mass Estimation: Total stellar mass M⋆ is reconstructed directly from the
kinematic data. We integrate the baryonic velocity components at the outermost observed
radius rlast assuming Newtonian dynamics, consistent with the fixed mass-to-light ratios
defined in Eq. (1):

M⋆ =
rlast
G

(
ΥdiskV

2
disk(rlast) + ΥbulgeV

2
bulge(rlast)

)
. (64)

Halo Assignment:

• Halo Mass (M200): We map the estimated M⋆ to the virial mass M200 using the
inverse of the stellar-to-halo mass relation (SHMR) from Moster et al. (2013) at
z = 0.

• Concentration (c200): The halo concentration is derived from the mass-concentration
relation of Dutton & Macciò (2014), explicitly fixing the Hubble parameter to the
Planck value (h = 0.674).

• Velocity Profile: The dark matter contribution is modeled as a standard NFW
halo:

V 2
NFW(r) = V 2

200

1

x

ln(1 + cx)− cx
1+cx

ln(1 + c)− c
1+c

, (65)

where x = r/R200. The virial radius R200 and virial velocity V200 are calculated
using the critical density defined by H0,Planck.
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The total velocity is then VLCDM =
√

V 2
b + V 2

NFW. No parameters are tuned to minimize
residuals for individual galaxies.

13.4.3 3. MOND (Standard Benchmark)

We employ the standard interpolation function µ(x) = x/(1 + x) with the canonical
acceleration scale a0 = 1.2 × 10−10ms−2. The prediction is given analytically by the
solution to the algebraic quadratic equation:

VMOND(r) =

√
V 2
b (r) +

√
V 4
b (r) + 4V 2

b (r)a0r

2
. (66)

Note: In this benchmark, ‘MOND’ refers strictly to the algebraic µ-prescription (a phe-
nomenological mapping), not a physical theory. It is included only as an empirical compression
baseline for RAR.

13.4.4 4. Emergent Gravity (Verlinde, 2016)

We test the theoretical scaling proposed by Verlinde, where the acceleration scale is determined
by the Hubble parameter H0. Using the theoretical coefficient 1/6:

aVG =
cH0

6
≈ 1.1× 10−10ms−2. (67)

The velocity profile follows the Deep-MOND scaling for point masses:

VVerlinde(r) =

√
V 2
b (r) +

√
aVGV 2

b (r)r. (68)

13.4.5 5. WILL Relational Geometry (RG)

The RG prediction is structurally similar to the geometric mean scaling but employs a distinct
coefficient derived from the theory’s potential resonance condition (3π):

VRG(r) =

√
V 2
b (r) +

√
aκV 2

b (r)r. (69)

Crucially, the acceleration scale aκ is not fitted and is not based on external H0 measurements.
It is derived exclusively from the CMB temperature T0 and the fine-structure constant α:

aκ =
cH0

3π
, where H0 ≡

√
8πGργ/(3α2). (70)

This yields a theoretical H0 ≈ 68.15 km/s/Mpc and aκ ≈ 0.70× 10−10ms−2.

13.5 Results
Performance is evaluated using three robust metrics: Median Absolute Error (MedAE), Median
Signed Bias (systematic offset), and the fraction of data points predicted within 10 km/s (F10).
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13.5.1 Understanding the Metrics:

• MedAE (Median Absolute Error): This indicates the typical magnitude of the error
in velocity prediction, regardless of whether it’s an over-prediction or under-prediction. A
lower MedAE means the model’s predictions are closer to the observed values on average.

• Bias (Median Residual): This measures the systematic tendency of the model to either
over-predict (positive bias) or under-predict (negative bias) the observed velocities. A bias
closer to 0 indicates a more accurate and less systematic error.

• F10 (Fraction Within 10 km/s): This is the fraction of data points where the model’s
predicted velocity is within 10 km/s of the observed velocity. A higher F10 means a larger
proportion of predictions are very accurate.

Table 5: Global performance metrics on the full SPARC sample (N = 175). Values
represent the median across all galaxies.

Model MedAE [km/s] Bias [km/s] F10

Newtonian (baryons only) 38.46 +36.91 0.08
LCDM (Abundance Matching) 13.32 -6.83 0.36
MOND (Standard a0) 10.43 −4.37 0.48
Verlinde (a0 = cH0/6) 12.27 −8.52 0.33
WILL RG (aκ = cH0/3π) 11.18 −2.26 0.47

13.5.2 Analysis of Gas-Dominated Systems

To isolate physical validity from stellar mass-to-light ratio uncertainties, we analyze the subset
of galaxies dominated by gas [V 2

gas > (ΥV 2
disk + ΥV 2

bul)]. In this regime, the baryonic mass
distribution is known with high precision.

Table 6: Performance metrics on Gas-Dominated galaxies (GasFrac > 0.5).
Model MedAE [km/s] Bias [km/s] F10

LCDM (AM) 7.42 -3.91 0.65
MOND (Standard) 7.70 −5.12 0.70
Verlinde (1/6) 8.04 −5.90 0.71
WILL RG (1/3π) 7.00 +0.53 0.66
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Figure 4: Grey points represent raw data; black squares denote binned means with stan-
dard error of the mean (SEM). Standard MOND (a0 = 1.2 × 10−10, blue) and Ver-
linde’s Emergent Gravity (a0 ≈ 1.1 × 10−10, green) systematically overpredict the
observed acceleration in the low-acceleration regime (gbar < 10−11), lying outside the
SEM error bars. WILL Relational Geometry (red), utilizing a theoretically derived
acceleration scale aκ = cH0/3π ≈ 0.7×10−10, exhibiting negligible systematic bias (+0.53
km/s).

14 The Universal Radial Acceleration Relation (RAR)
We subjected the WILL framework to the rigorous Radial Acceleration Relation (RAR) test
using the full SPARC database (175 galaxies, > 3000 data points). Unlike standard Dark Matter
models, which treat the halo as a free component with arbitrary fitting parameters for each galaxy,
WILL RG predicts a rigid, universal functional relationship between the baryonic acceleration
gbar and the observed acceleration gobs.

14.1 The Zero-Parameter Prediction
The theoretical curve is derived solely from the Geometric Mean Interference principle
established in the Projection Law derivation. The observed acceleration is the superposition of
the local Newtonian field and the global vacuum impedance:

gobs = gbar +
√
gbar · aκ (71)

Crucially, the global acceleration scale aκ is not fitted to the galaxy data. It is fixed entirely
by the Cosmological Anchor derived in the previous sections from the CMB temperature (T0)
and the fine-structure constant (α):

aκ =
cH0

3π
≈ 7.02× 10−11 m/s2 (72)

antonrize.github.io/WILL 34 DOI: 10.5281/zenodo.17115270

https://antonrize.github.io/WILL/
https://doi.org/10.5281/zenodo.17115270


where H0 ≈ 68.15 km/s/Mpc is the theoretically derived Hubble parameter.

14.2 Statistical Validation
Figure 5 demonstrates the resulting "Main Sequence of Galaxies". Despite the vast diversity
of morphological types—ranging from gas-dominated dwarfs to massive high-surface-brightness
spirals—the data collapses onto the single theoretical curve predicted by Eq. (14).

The statistical analysis of the residuals (logarithmic deviation) yields:

• Root Mean Square Error (RMSE): 0.065 dex.

• Mean Offset: 0.007 dex (approx. 1.5%).

Conclusion: The theory matches observations with near zero systematic bias and a scatter
consistent with observational uncertainties. This strongly suggests that the interference effect
governed by the Universal Horizon scale (H0) can fully explain and accurately predict the obser-
vation phenomena that usually attributed to Dark Matter.

Figure 5: Radial Acceleration Relation (RAR) for 175 SPARC galaxies. The green dots
shows the density of > 3000 individual data points. The cyan line represents the WILL
Resonance Interference prediction (gobs = gbar+

√
gbaraκ) using the H0 value derived from

CMB thermodynamics. The remarkable agreement (RMSE ≈ 0.065 dex) without free
parameters strongly suggests that galactic dynamics are regulated by the global horizon.

15 Local Verification: The Solar System Test
To demonstrate the precision of RG, we apply the derived rotation speed law to our own local
environment: the motion of the Sun within the Milky Way. This test is critical because it relies
on high-precision local data rather than statistical ensembles.
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15.1 Inputs: Zero Free Parameters
Local Baryonic Baseline (Vbar): Based on publication by F. Iocco, M. Pato, and G. Bertone (“Evi-
dence for dark matter in the inner Milky Way,” Nature Physics, vol. 11, no. 3, pp. 245–248, 2015.)
standard mass models of the Milky Way (bulge + disk + gas), the circular velocity contribution
solely from visible baryonic matter at the Solar radius (R0 ≈ 8.0 kpc) is approximately:

Vbar ≈ 170± 5 km/s (73)

This value represents the purely Newtonian potential of the luminous galaxy, excluding any Dark
Matter halo.

15.2 The Prediction
We apply the Geometric Mean Interference Law derived for galactic dynamics. The total
observed velocity squared is the sum of the local self-energy and the resonant coupling to the
horizon:

V 2
obs = V 2

bar +
√
V 2
bar aκR0 (74)

15.3 Calculation
Substituting the input values (R0 = 8.0 kpc ≈ 2.47× 1020 m):

V 2
obs = (170)2 +

√
(170)2 · (7.02× 10−11 · 2.47× 1020) · 10−6

= 28900 +
√
28900 · 17339

= 28900 + 22380

= 51280 (km/s)2

Taking the square root yields the predicted orbital velocity:

Vpred ≈ 226.4 km/s (75)

15.4 Result
The predicted velocity of ≈ 226 km/s is in excellent agreement with the IAU standard value (220
km/s) and recent Gaia kinematic derivations (229± 6 km/s).

Crucially, the "missing" velocity component (≈ 56 km/s), traditionally attributed to a Dark
Matter halo, emerges here automatically as the geometric interference term

√
V 2
baraκR0.

The galaxy is not filled with invisible matter; it is resonant with the cosmic horizon.

16 The Baryonic Escape Threshold

16.1 Derivation of the Transition Scale (Rtrans)
We proceed directly from the Law of Resonant Projection derived in the Galactic Dynamics
analysis. The total observed acceleration gobs is defined by the interference between the local
baryonic source gbar and the global Machian background aκ:

gobs = gbar +
√
gbaraκ (76)
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By expressing this relation in terms of inertial mass (Mobs = r2gobs/G), we obtain a linear
scaling law:

Mobs

Mbar
= 1 +

r

Rtrans
(77)

The transition scale Rtrans is determined by the geometric mean of the local event horizon
(Schwarzschild radius Rs) and the global cosmic horizon (Hubble Horizon RH). Substituting
the derived Machian acceleration aκ = c2/(3πRH), we find:

Rtrans =

√
GM

aκ
=

√
3π

2
RsRH (78)

This radius defines the geometric horizon of the galaxy: the distance where the local
curvature structurally couples to the global topology.

16.2 The Physics of the Equivalence Point
WILL RG mandates a precise dynamical condition at the transition radius r = Rtrans. Substi-
tuting this condition into the mass equation yields:

Mobs

Mbar
= 1 + 1 = 2 (79)

Consequently, the observed velocity must exceed the Newtonian prediction by exactly
√
2:

Vobs = Vbar

√
2 (80)

Since the Newtonian escape velocity is defined as Vesc = Vcirc

√
2, we arrive at the identity:

Vobs(Rtrans) ≡ V bary
esc (81)

Physical Definition: The "Dark Matter" phenomenon is the observational signature of
containment. When the orbital velocity exceeds the local baryonic escape velocity (V > V bary

esc ),
the system couples to the global Horizon, stabilizing the orbit.

16.3 Methodology of the "Bullseye" Test
We test this identity against the SPARC database (2), comprising 161 galaxies. The analysis
adheres to a strict Zero Free Parameters protocol:

1. Global Constants: H0 is fixed to the derived value of 68.15 km/s/Mpc.

2. Fixed Astrophysics: Stellar Mass-to-Light ratios are fixed globally (Υdisk = 0.5,Υbulge =
0.7).

3. Normalized Coordinates:

• X-axis: X = r/Rtrans

• Y-axis: Y = Vobs/V
bary
esc

The Prediction: The data must collapse onto the curve Y =
√

(1 +X)/2 and pass strictly
through the "Bullseye" point (1, 1).
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16.4 Results
Figure 6 presents the results of the analysis.

Figure 6: The Universal Escape Threshold. The plot shows the normalized rotation
velocity (Y = Vobs/V

bary
esc ) versus normalized radius (X = r/Rtrans) for 161 galaxies (N =

3007 points). Green points: Raw data. Black points: Binned means with standard
errors. Cyan Line: Hard Fixed WILL RG prediction. Orange Dotted Line: Naive
WILL RG without 1.5π factor. The red crosshair marks the Equivalence Point (1, 1).

Quantitative Analysis.

• Equivalence Point Accuracy: In the critical transition zone (0.95 < X < 1.05), the
observed normalized velocity is Yobs = 0.965 ± 0.018. The deviation is -3.5% from the
theoretical target. Given the ∼ 20% systematic uncertainty in stellar population models,
this supports the prediction.

• Global Bias: Across the full radial range, the mean model bias is +1.3%.

16.5 Robustness
To verify that the result is not an artifact of axis interdependence:

1. Null Hypothesis: A Newtonian universe would yield a horizontal line at Y ≈ 0.707. The
data rises to Y = 1 solely due to the non-Newtonian boost.

2. Scale Sensitivity: An incorrect derivation of H0 (and thus aκ) would shift the curve
laterally (Orange Dotted Line), causing a misalignment at (1, 1). The precise intersection
confirms the geometric link between the thermodynamics of CMB temperature, the
Quantum Mechanics of Fine Structure Constant α and the galactic dynamics coupling
with Hubble Horizon H0.
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17 Gravitational Lensing

17.1 Limits of Validity: The Weak Lensing Problem
Weak gravitational lensing is frequently cited as a critical test for theories addressing the dark
matter problem. However, within WILL Relational Geometry, weak lensing cannot be treated
as a primary or decisive validation requirement, for the following reasons.

First, weak lensing is not a direct observable in the same sense as kinematic measurements
or strong lensing geometry. The measured quantity is not the gravitational field itself, but a
highly processed statistical reconstruction of galaxy shape distortions. These reconstructions
depend on extensive data conditioning, including point-spread-function deconvolution, shape-
noise suppression, tomographic binning, intrinsic-alignment modeling, and cosmology-dependent
filtering. As a result, weak lensing observables are strongly pipeline-dependent and cannot be
regarded as model-independent empirical inputs.

Second, weak lensing is dominated by line-of-sight projections through dynamically unrelaxed
structures, including merging systems, filamentary environments, and transient mass configura-
tions. WILL RG is explicitly formulated for energetically quasi-closed and phase-stable systems,
where relational closure and resonance conditions are well-defined. Applying a resonance-based,
equilibrium geometry to non-equilibrium line-of-sight superpositions is therefore methodologi-
cally unjustified.

A fully consistent weak-lensing treatment in RG requires a dedicated forward-modelling
pipeline (including survey selection, intrinsic alignments, and line-of-sight structure). This is
outside the scope of the present work; here we focus on direct dynamical observables and strong-
lensing systems where the mapping from geometry to observable is closer to one-step.

17.2 Strong Lensing: A Proof of Concept
17.2.1 Unified Vacuum Action

In WILL Relational Geometry, gravity is not a distinct force field but a manifestation of the
global energy density (Spacetime ≡ Energy). The total relational shift Q2, which determines
the inertial behaviour of baryons (manifesting as "Phantom Mass" in rotation curves), defines
the effective refractive density of the vacuum state.

We posit no additional geometric structures or hidden mass components. The hypothesis is
strict: the vacuum density that boosts stellar velocities must simultaneously act as the refractive
medium for photons. Therefore, the dynamical mass inferred from stellar kinematics (σstar) must
be identical to the lensing mass (σlens).

17.2.2 Proof of Concept: SDSSJ0946+1006

To validate this unification, we examine the benchmark system SDSSJ0946+1006 from the
SLACS survey. This system allows us to compare the "Phantom Mass" effect on matter against
its effect on light directly.

Input Data (5):

• Observed Stellar Velocity: σobs = 287± 5 km/s (Includes Relational Inertia).

• Observed Einstein Radius: θobs = 1.43± 0.01 arcsec.

Calculation: We apply the standard lensing deflection formula using the observed stellar
velocity as the sole input, assuming the light tracks the same potential Q2 as the stars:

θpred = 4π
(σobs

c

)2 Dls

Ds
(82)
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Using the geometric distances derived from the WILL RG expansion parameter (H0 ≈ 68.15):

θpred = 4π

(
287

299792

)2

× (0.4907)× 206265 ≈ 1.46′′ (83)

17.2.3 Result

The predicted lensing signal (1.46′′) agrees with the observation (1.43′′) within ≈ 2%. This
confirms that the Relational Inertia (Q2) responsible for the high stellar velocities is sufficient
to explain the gravitational lensing signal without invoking Dark Matter. The "Phantom Mass"
acts universally on both baryons and photons.

18 The Kinetic Resonance: Resolution of the Wide Bi-
nary Anomaly

18.1 The Problem: Breakdown of Newton in the Solar Neigh-
bourhood

While the Radial Acceleration Relation (RAR) establishes the geometric link between baryons
and the horizon on galactic scales (1020 m), a critical test of any modified gravity framework
is its applicability to small-scale systems (1014 m) that are free from the complexities of dark
matter halos and hydrodynamic gas pressure. Wide Binary Stars (r > 2000 AU) provide exactly
such a laboratory.

Recent high-precision analyses of the Gaia DR3 catalog (3; 4) have reported a definitive
breakdown of Newtonian dynamics at low accelerations (gN < 10−9m/s2). However, a significant
tension has emerged:

• Newtonian Failure: The observed gravity boost factor γ = gobs/gN rises clearly above
unity (γ > 1).

• MOND Overprediction: Standard Modified Newtonian Dynamics (AQUAL), tuned to
galactic rotation curves (a0 ≈ 1.2× 10−10), predicts a boost factor (γ ≈ 1.8− 2.0) that is
significantly higher than the observed values (γ ≈ 1.4− 1.6).

To resolve this, standard MOND requires ad-hoc “External Field Effects” (EFE). In contrast,
WILL Relational Geometry predicts this “weakened” anomaly naturally as a consequence of
geometric bifurcation.

18.2 Empirical Verification against Gaia DR3
We test this Kinetic Resonance prediction (aβ = cH0/6π) against the binned data from Chae
(2023) for pure binary systems. The theoretical boost factor is calculated as:

γWILL = 1 +

√
aβ
gN

= 1 +

√
cH0

6πgN
(84)
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Figure 7: The Kinetic Resonance Test. The plot compares the gravity boost factor as
a function of Newtonian acceleration. Blue dashed line: Standard MOND prediction
(a0 = 1.2 × 10−10m/s2), which systematically overestimates the anomaly. Red solid
line: WILL RG Kinetic Resonance prediction (aβ = cH0/6π ≈ 0.35× 10−10m/s2) passes
precisely through the observational data points, matches the reported trend of Wide
Binary observations without any parameter fitting.

Numerical Comparison (Deep Regime). At the characteristic low-acceleration point
gN = 10−9.8m/s2:

• Observed (Gaia): γ ≈ 1.45− 1.55.

• Standard MOND: γ ≈ 1.87 (Overprediction > 20%).

• WILL RG Prediction: γ ≈ 1.47 (Exact Agreement).

18.3 Conclusion regarding Local Dynamics
The successful prediction of the Wide Binary anomaly confirms the bifurcation of gravita-
tional dynamics:

• Structural systems (Galaxies) resonate via Ωpot = 2/3.

• Kinetic systems (Binaries) resonate via Ωkin = 1/3.

Both scales are governed by the single Universal Horizon parameter H0, unifying the dynamics
of the Solar neighbourhood with the expansion of the Universe.

19 Consolidating Mach’s Principle
Through out our research we consistently pilled of anthropocentric noise in our philosophy in our
mathematics and in our expectations. The goal is to silent the beast within so the Fundamental
Tone is clear and could lead the way. We letting the Universe to unfold by its own terms and
rules. Now it is clear where the yellow brick road led us all that time. Mach’s Principle!...
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19.1 Derivation of Electron Mass: The Geometric Capacity Res-
onance

19.2 Topological Invariants
We derive the electron mass directly from the resonance between the internal geometry of the par-
ticle and the global geometry of the Universe. We define two dimensionless topological invariants
describing the system state:

1. The Internal Capacity Ratio (Rint): The ratio of the particle’s Electromagnetic Criti-
cal Radius (Rq) to its Gravitational Schwarzschild Radius (Rs). This describes the intrinsic
intensity of the particle’s curvature.

Rint =
Rq

Rs
(85)

Using the definitions derived in Part I (Rs = κ2r = 2Gm/c2) and Part III (Rq = κ2qr =
2α2a0 = 2e2/4πε0mc2):

Rint =

(
2e2

4πε0mec2

)
(
2Gme
c2

) =
e2

4πε0Gm2
e

(86)

2. The External Horizon Ratio (Rext): The ratio of the Universal Hubble Horizon (RH)
to the particle’s Unitary Energy Radius (re). This describes the particle’s scale relative to
the cosmos.

Rext =
RH

re
=

c/H0

αℏ/mec
(87)

Note: We use the Unitary Energy Radius re (Classical Radius) here because it defines the
localization scale of the rest energy E0, consistent with the inertial definition of mass.

19.3 The Holographic Projection Principle
A direct equality Rint = Rext is geometrically invalid because it equates a Volumetric Poten-
tial Capacity (scaling with mass density) with a Linear Metric Distance.

To map the internal curvature intensity (Rint) onto the linear universal axis (Rext), we must
apply the Volumetric Projection Factor Γ3. This factor accounts for the transformation
from the closed loop topology (S1 → S2) of the particle kernel to the linear diameter (R1) of the
horizon measurement.

The Geometric Mach Equation is thus:

Rint · Γ3 = Rext (88)

where Γ = 1
π
√
2

is the fundamental linear projection constant of WILL RG (1/
√
2 for kinetic

closure, 1/π for diametric projection).

19.4 Derivation
Substituting the definitions into Eq. (88):(

e2

4πε0Gm2
e

)
· Γ3 =

mec
2

H0αℏ

Using the definition of the fine structure constant α = e2

4πε0ℏc , we simplify the Left Hand Side
(LHS):

LHS =
αℏc
Gm2

e

· Γ3

antonrize.github.io/WILL 42 DOI: 10.5281/zenodo.17115270

https://antonrize.github.io/WILL/
https://doi.org/10.5281/zenodo.17115270


Now equate to RHS:
αℏc
Gm2

e

· Γ3 =
mec

2

H0αℏ

Isolating the mass term (m3
e) by multiplying both sides by m2

e and rearranging:

m3
e = Γ3 · (αℏc)(H0αℏ)

Gc2

m3
e = Γ3 · H0(αℏc)2

Gc3

Taking the cube root of both sides:

me = Γ

(
H0(αℏc)2

Gc3

)1/3

(89)

Substituting the explicit geometric projection Γ = 1
π
√
2
:

me(WILL) =
1

π
√
2

(
H0(αℏc)2

Gc3

)1/3

(90)

19.5 Numerical Verification
Using the value of H0 derived in Part II from the CMB temperature (H0 ≈ 2.2075× 10−18 s−1):

• Calculated Mass: me(WILL) ≈ 9.064× 10−31 kg

• Observed Mass: me(CODATA) ≈ 9.109× 10−31 kg

• Precision: The deviation is ≈ 0.49%.

19.6 Conclusion
This result confirms that the electron’s mass is the consequence of a holographic equilibrium.
The intrinsic curvature intensity of the particle, when projected from its closed topology onto
the linear universe via Γ3, exactly balances the scale of the cosmic horizon.

This completes the Theoretical Ouroboros:

1. Micro → Macro: α → H0 (Part II).

2. Macro → Micro: H0 → me (Part II Conclusion).

Provided evidence strongly suggest that the Universe is a single, resonant, self-defining geometric
relational unity.

20 General Discussion: Towards a Geometric Synthesis
The analysis presented in this work yields three structurally significant results that challenge the
foundations of the Standard Model (ΛCDM) and standard Modified Gravity (MOND):

The Failure of "Dark" Parameters. ΛCDM, when constrained by global scaling laws
rather than individual halo fitting, fails to reproduce galactic rotation curves (systematic bias
−6.83 km/s). Furthermore, the requirement of ≈ 26% Dark Matter for CMB acoustics is shown
to be redundant: the acoustic peaks are accurately recovered by a pure baryonic load (≈ 4.2%)
on a tensioned S2 topology.
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The Resolution of the Gravity Boost Tension. The systematic failure of standard
MOND to predict the Wide Binary boost factor (γ ≈ 1.8 vs observed 1.4) illustrates the lim-
itations of treating gravity as a modified force field with a universal acceleration scale. WILL
RG reveals that the coupling to the Horizon is topology-dependent. Phenomenological models
fail because they lack the geometric ontology to distinguish the different topological coupling
weights (Ω) connecting local systems to the Cosmic Fundamental Tone (f0 = H0

2π ).

The Thermodynamic Origin of Dynamics. Unlike phenomenological models that fit
acceleration scales (a0) to minimize residuals, WILL RG derives the acceleration scale aMach =
cH0/2π entirely from the CMB temperature and α. The fact that this thermodynamically
derived scale eliminates the bias in rotation curves (+0.53 km/s vs > 5 km/s for MOND) serves
as strong evidence that gravity is not an isolated force, but a holographic response to the global
energy state.

20.1 Orthogonal Validation: The Geometric Invariant α

A fundamental epistemological test of any physical theory is the independence of its observables.
In standard ΛCDM cosmology, the Hubble parameter H0 and the acoustic scale ℓpeak are cou-
pled variables; they are derived from a multi-parameter fit where altering H0 shifts the angular
diameter distance, forcing a recalibration of matter densities (Ωm,ΩΛ) to maintain consistency
with the CMB spectrum.

In WILL Relational Geometry, we observe a strict Orthogonal Decoupling of these pa-
rameters. The derivations presented in this paper proceed along two mathematically disjoint
paths, yet converge on the same observational reality (Planck 2018).

20.2 Path A: The Thermodynamic Limit (H0)
The expansion rate H0 is derived as a limit of Energy Saturation. It relies on thermodynamic
input:

H0 =
√

8πG · ρmax where ρmax =
ργ(T0)

3α2
(91)

Input: TCMB (Temperature) and α.
Result: H0 ≈ 68.15 km/s/Mpc.

20.3 Path B: The Topological Resonance (ℓvac)
The acoustic scale is derived as a limit of Resonant Structure. It relies exclusively on the
kinematic scale and geometric tension:

ℓvac =
1

α
(1 + ΩΛ)︸ ︷︷ ︸
Impedance

(92)

Input: α and ΩΛ = 2/3. (Independent of TCMB or ργ).
Result: ℓvac ≈ 228.39 (unloaded).

20.4 The Independence Theorem
Crucially, the calculation of the acoustic peak does not require knowledge of the expansion history
(H0) or the age of the Universe. Conversely, the calculation of H0 does not require knowledge
of the vacuum tension. The correlation between these macroscopic observables is not a result of
parameter fitting, but a consequence of their common origin in the geometric invariant α:
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∂H0

∂ℓpeak
= 0 (93)

The fact that two independent derivation paths - one thermodynamic and one topological
- yield results matching high-precision empirical data (δ ≈ 1.0% for H0, δ ≈ 0.004% for ℓ)
constitutes a strong argument for the generative WILL RG.

20.5 Sensitivity Analysis: The Major Constraints on Dark Mat-
ter

WILL RG allows us to perform a precise sensitivity analysis regarding the mass content of the
Universe. The acoustic peak position is determined by the inertial loading of the vacuum tension:

ℓobserved = ℓvac ·
√

ΩΛ

ΩΛ +Ωload
(94)

We compare two scenarios: one containing only BBN-derived Baryons (WILL RG), and one
including the standard Dark Matter halo (ΛCDM).

Scenario Load Peak Deviation

(Ωload) (ℓ) from Planck

WILL RG (Pure Baryons) 0.048 220.59 −0.005%

Standard Model (ΛCDM + DM) 0.308 188.89 −14.37%

Table 7: Baryonic Consistency Test. The vacuum stiffness ΩΛ = 2/3 accurately
reproduces the first acoustic peak (ℓ ≈ 220.6) only when loaded with standard baryonic
matter (Ωb ≈ 0.048). The addition of Dark Matter (Ωdm ≈ 0.26) creates excessive inertial
drag, shifting the peak to ℓ ≈ 189, which is observationally ruled out.

Table 8: Baryonic Consistency Test. The vacuum tension ΩΛ = 2/3 accurately
reproduces the first acoustic peak (ℓ ≈ 220.6) only when loaded with standard baryonic
matter (Ωb ≈ 0.048 From Nuclear Physics of the Yearly Universe). The addition of Dark
Matter (Ωdm ≈ 0.26) creates excessive inertial drag, shifting the peak to ℓ ≈ 189, which
is in tension with observational data.

Conclusion: The high tension of the structural projection (ΩΛ = 2/3) eliminates the need
for Dark Matter to explain the acoustic compression scale. The Universe operates as a Baryonic
oscillator on a stiff geometric manifold.
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Parameter or
Observable

Derived
Theoretical
Value

Empirical
Comparison
Value

System
or
Dataset

Deviation
or Ac-
curacy

Physical For-
mulation

1. Hubble Con-
stant (H0)

68.15
km/s/Mpc

67.4±0.5
km/s/Mpc

Planck
2018

+1.0% Geometric satura-
tion density de-
rived from CMB
temperature and
α

2. CMB First
Acoustic Peak
(l1)

220.59 220.60 Planck
2018

≈ 0.01% Resonant har-
monics of an S2

topology loaded
by 4.2% baryonic
mass

3. CMB
Quadrupole
Power (Dl=2)

0.132–0.285
(Corridor)

≈ 0.20 Planck
2018

Falls
precisely
within
pre-
dicted
corridor

Vacuum tension
acting as a high-
pass filter on
a tensioned S2

membrane

4. Galactic
Rotation Curves
Bias

0.70 × 10−10

m/s2 (ak)
-2.26 km/s
(Bias)

SPARC
(175
galaxies)

RMSE
≈ 0.065
dex

Structural Pro-
jection Resonant
Interference with
Universal Funda-
mental Tone

5. Solar Orbital
Velocity

226.4 km/s 229 ± 6 km/s Gaia DR3
/ Milky
Way

Excellent
agree-
ment

Geometric mean
interference
between local
potential and
global horizon

6. Wide Binary
Gravity Boost
(γ)

≈ 1.47 ≈ 1.45–1.55 Gaia DR3
/ Chae
2023

Exact
Agree-
ment

Kinetic Reso-
nance Scale (S1

carrier coupling
weight 1/3)

7. Type Ia
Supernova Dis-
tance Modulus

Offset ex-
pected ≈0.150
mag

Raw residual
≈ -0.151 mag

Pantheon+ Shape
devia-
tion ≤
0.02 mag

Geometric Energy
Budget Partition-
ing (2:1 ratio of
S2 tension to ki-
netic mass)

8. Strong Lens-
ing Einstein Ra-
dius

1.46” 1.43 ± 0.01” SDSSJ0946
+1006
(SLACS)

≈ 2% Phantom Inertia
(Q2) acting as
universal refrac-
tive medium

9. Recombina-
tion Epoch

≈364,860 years ≈378,000 years Standard
Cosmo-
logical
Dating

≈ 3.5% Unit Phase Con-
dition (Ωcrit = 1
radian) where arc
length equals ra-
dius of curvature

10. Electron
Mass (me)

9.064 × 10−31

kg
9.109 × 10−31

kg
CODATA ≈ 0.49% Holographic Pro-

jection Principle /
Geometric Capac-
ity Resonance
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20.6 The Unified Scale Invariance
The condition for galactic stability derived here is a direct manifestation of the same topological
phase-closure constraint acting at the cosmic scale. As established in the Prerequisite, the fine-
structure constant α defines the scaling ratio between the base state of matter and the critical
limit. This implies that the macroscopic horizon RH and the microscopic Compton wavelength
λe are rigidly locked by the same geometry.

Therefore, the Galaxy is the gravitational realization of the Bohr orbit, scaled by the total
relational capacity of the Universe.

System Microcosm (Atom) Macrocosm (Galaxy)
Closure Condition Standing Wave Horizon Resonance

Geometric Equation 2πrn = nλe Rtrans =
√

3
2πRsRH

Scaling Projection α (Kinematic Ground) H0 (Horizon Limit)

20.7 Final Conclusion
We have demonstrated that the "Dark Matter" phenomenon is the observational signature of
scale-invariant geometric closure. By replacing the dark sector with the rigid geometry of the
Global Horizon, we achieve a unification of Baryonic physics across 20 orders of magnitude.

Just as the electron must satisfy the standing wave condition to exist as a bound state within
the atom, the galaxy must satisfy the frequency resonance condition to exist as a bound state
within the Universe. The precision of these predictions, achieved without any free parameters,
strongly suggests that the paradigm of "Dark" phenomenology is becoming obsolete, superseded
by a transparent Relational Geometric Ontology.

Code and data are fully open-source at: https://antonrize.github.io/WILL/
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